Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(12): 2913-2920, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37715344

RESUMO

Chromosomal microarray analysis (CMA) is typically performed for investigation of autism using blood DNA. However, blood collection poses significant challenges for autistic children with repetitive behaviors and sensory and communication issues, often necessitating physical restraint or sedation. Noninvasive saliva collection offers an alternative, however, no published studies to date have evaluated saliva DNA for CMA in autism. Furthermore, previous reports suggest that saliva is suboptimal for detecting copy number variation. We therefore aimed to evaluate saliva DNA for single nucleotide polymorphism (SNP) CMA in autistic children. Saliva DNA from 48 probands and parents (n = 133) was obtained with a mean concentration of 141.7 ng/µL. SNP CMA was successful in 131/133 (98.5%) patients from which we correlated the size and accuracy of a copy number variant(s) called between a proband and carrier parent, and for a subgroup (n = 17 probands) who had a previous CMA using blood sample. There were no discordant copy number variant results between the proband and carrier parent, or the subgroup, however, there was an acceptable mean size difference of 0.009 and 0.07 Mb, respectively. Our findings demonstrate that saliva DNA can be an alternative for SNP CMA in autism, which avoids blood collection with significant implications for clinical practice guidelines.


Assuntos
Transtorno Autístico , Criança , Humanos , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Variações do Número de Cópias de DNA/genética , Saliva , Polimorfismo de Nucleotídeo Único , Análise em Microsséries , DNA
2.
Pathology ; 55(6): 818-826, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37414616

RESUMO

Single nucleotide polymorphism (SNP) chromosome microarray is well established for investigation of children with intellectual deficit/development delay and prenatal diagnosis of fetal malformation but has also emerged for uniparental disomy (UPD) genotyping. Despite published guidelines on clinical indications for testing there are no laboratory guidelines published for performing SNP microarray UPD genotyping. We evaluated SNP microarray UPD genotyping using Illumina beadchips on family trios/duos within a clinical cohort (n=98) and then explored our findings in a post-study audit (n=123). UPD occurred in 18.6% and 19.5% cases, respectively, with chromosome 15 most frequent (62.5% and 25.0%). UPD was predominantly maternal in origin (87.5% and 79.2%), highest in suspected genomic imprinting disorder cases (56.3% and 41.7%) but absent amongst children of translocation carriers. We assessed regions of homozygosity among UPD cases. The smallest interstitial and terminal regions were 2.5 Mb and 9.3 Mb, respectively. We found regions of homozygosity confounded genotyping in a consanguineous case with UPD15 and another with segmental UPD due to non-informative probes. In a unique case with chromosome 15q UPD mosaicism, we established the detection limit of mosaicism as ∼5%. From the benefits and pitfalls identified in this study, we propose a testing model and recommendations for UPD genotyping by SNP microarray.


Assuntos
Polimorfismo de Nucleotídeo Único , Dissomia Uniparental , Criança , Gravidez , Feminino , Humanos , Dissomia Uniparental/diagnóstico , Dissomia Uniparental/genética , Genótipo , Impressão Genômica , Cromossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...